Lightning
Updated: Jan 18, 2022

Lightning is a naturally occurring electrostatic discharge during which two electrically charged regions in the atmosphere or ground temporarily equalize themselves, causing the instantaneous release of as much as one gigajoule of energy. This discharge may produce a wide range of electromagnetic radiation, from very hot plasma created by the rapid movement of electrons to brilliant flashes of visible light in the form of black-body radiation. Lightning causes thunder, a sound from the shock wave which develops as gases in the vicinity of the discharge experience a sudden increase in pressure. Lightning occurs commonly during thunderstorms and other types of energetic weather systems, but volcanic lightning can also occur during volcanic eruptions. The three main kinds of lightning are distinguished by where they occur: either inside a single thundercloud, between two different clouds, or between a cloud and the ground. Many other observational variants are recognized, including “heat lightning”, which can be seen from a great distance but not heard; dry lightning, which can cause forest fires; and ball lightning, which is rarely observed scientifically. Humans have deified lightning for millennia, and lightning-inspired expressions like “bolt from the blue”, “to be struck by lightning” (as to having an epiphany or enlightenment), “lightning never strikes twice (in the same place)” and “blitzkrieg” are in common usage. In some languages, the notion of “love at first sight” literally translates as “lightning strike”. Electrification The details of the charging process are still being studied by scientists, but there is general agreement on some of the basic concepts of thunderstorm electrification. The main charging area in a thunderstorm occurs in the central part of the storm where air is moving upward rapidly (updraft) and temperatures range from −15 to −25 °C (5 to −13 °F); see Figure 1. At that place, the combination of temperature and rapid upward air movement produces a mixture of super-cooled cloud droplets (small water droplets below freezing), small ice crystals, and graupel (soft hail). The updraft carries the super-cooled cloud droplets and very small ice crystals upward. At the same time, the graupel, which is considerably larger and denser, tends to fall or be suspended in the rising air. The differences in the movement of the precipitation cause collisions to occur. When the rising ice crystals collide with graupel, the ice crystals become positively charged and the graupel becomes negatively charged; see Figure 2. The updraft carries the positively charged ice crystals upward toward the top of the storm cloud. The larger and denser graupel is either suspended in the middle of the thunderstorm cloud or falls toward the lower part of the storm. The result is that the upper part of the thunderstorm cloud becomes positively charged while the middle to lower part of the thunderstorm cloud becomes negatively charged. The upward motions within the storm and winds at higher levels in the atmosphere tend to cause the small ice crystals (and positive charge) in the upper part of the thunderstorm cloud to spread out horizontally some distance from thunderstorm cloud base. This part of the thunderstorm cloud is called the anvil. While this is the main charging process for the thunderstorm cloud, some of these charges can be redistributed by air movements within the storm (updrafts and downdrafts). In addition, there is a small but important positive charge buildup near the bottom of the thunderstorm cloud due to the precipitation and warmer temperatures. General considerations A typical cloud-to-ground lightning flash culminates in the formation of an electrically conducting plasma channel through the air in excess of 5 km (3.1 mi) tall, from within the cloud to the ground’s surface. The actual discharge is the final stage of a very complex process. At its peak, a typical thunderstorm produces three or more strikes to the Earth per minute. Lightning primarily occurs when warm air is mixed with colder air masses, resulting in atmospheric disturbances necessary for polarizing the atmosphere. However, it can also occur during dust storms, forest fires, tornadoes, volcanic eruptions, and even in the cold of winter, where the lightning is known as thunder snow. Hurricanes typically generate some lightning, mainly in the rain bands as much as 160 km (99 mi) from the center. The science of lightning is called fulminology, and the fear of lightning is called astraphobia. Distribution and frequency On Earth, the lightning frequency is approximately 44 (± 5) times per second, or nearly 1.4 billion flashes per year and the average duration is 0.2 seconds made up from a number of much shorter flashes (strokes) of around 60 to 70 microseconds. Many factors affect the frequency, distribution, strength and physical properties of a typical lightning flash in a particular region of the world. These factors include ground elevation, latitude, prevailing wind currents, relative humidity, proximity to warm and cold bodies of water, etc. To a certain degree, the ratio between IC (in-cloud or intracloud), CC (cloud-to-cloud) and CG (cloud-to-ground) lightning may also vary by season in middle latitudes. Because human beings are terrestrial and most of their possessions are on the Earth where lightning can damage or destroy them, CG lightning is the most studied and best understood of the three types, even though IC and CC are more common types of lightning. Lightning’s relative unpredictability limits a complete explanation of how or why it occurs, even after hundreds of years of scientific investigation. About 70% of lightning occurs over land in the tropics where atmospheric convection is the greatest. This occurs from both the mixture of warmer and colder air masses, as well as differences in moisture concentrations, and it generally happens at the boundaries between them. The flow of warm ocean currents past drier land masses, such as the Gulf Stream, partially explains the elevated frequency of lightning in the Southeast United States. Because large bodies of water lack the topographic variation that would result in atmospheric mixing, lightning is notably less frequent over the world’s oceans than over land. The North and South Poles are limited in their coverage of thunderstorms and therefore result in areas with the least amount of lightning. In general, cloud-to-ground (CG) lightning flashes account for only 25% of all total lightning flashes worldwide. Since the base of a thunderstorm is usually negatively charged, this is where most CG lightning originates. This region is typically at the elevation where freezing occurs within the cloud. Freezing, combined with collisions between ice and water, appears to be a critical part of the initial charge development and separation process. During wind-driven collisions, ice crystals tend to develop a positive charge, while a heavier, slushy mixture of ice and water (called graupel) develops a negative charge. Updrafts within a storm cloud separate the lighter ice crystals from the heavier graupel, causing the top region of the cloud to accumulate a positive space charge while the lower level accumulates a negative space charge. Because the concentrated charge within the cloud must exceed the insulating properties of air, and this increases proportionally to the distance between the cloud and the ground, the proportion of CG strikes (versus cloud-to-cloud (CC) or in-cloud (IC) discharges) becomes greater when the cloud is closer to the ground. In the tropics, where the freezing level is generally higher in the atmosphere, only 10% of lightning flashes are CG. At the latitude of Norway (around 60° North latitude), where the freezing elevation is lower, 50% of lightning is CG. Lightning is usually produced by cumulonimbus clouds, which have bases that are typically 1–2 km (0.62–1.24 mi) above the ground and tops up to 15 km (9.3 mi) in height. The place on Earth where lightning occurs most often is near the small village of Kifuka in the mountains of the eastern Democratic Republic of the Congo, where the elevation is around 975 m (3,200 feet). On average, this region receives 158 lightning strikes per square kilometer per year (410/square mile/year). Lake Maracaibo in Venezuela averages 297 days per year with lightning activity, an effect recognized as Catatumbo lightning. Other lightning hotspots include Catatumbo in Venezuela, Singapore, and Lightning Alley in Central Florida. Necessary conditions In order for an electrostatic discharge to occur, two preconditions are necessary: firstly, a sufficiently high potential difference between two regions of space must exist, and secondly, a high-resistance medium must obstruct the free, unimpeded equalization of the opposite charges. The atmosphere provides the electrical insulation, or barrier, that prevents free equalization between charged regions of opposite polarity. It is well understood that during a thunderstorm there is charge separation and aggregation in certain regions of the cloud; however the exact processes by which this occurs are not fully understood. Electrical field generation As a thundercloud moves over the surface of the Earth, an equal electric charge, but of opposite polarity, is induced on the Earth’s surface underneath the cloud. The induced positive surface charge, when measured against a fixed point, will be small as the thundercloud approaches, increasing as the center of the storm arrives and dropping as the thundercloud passes. The referential value of the induced surface charge could be roughly represented as a bell curve. The oppositely charged regions create an electric field within the air between them. This electric field varies in relation to the strength of the surface charge on the base of the thundercloud – the greater the accumulated charge, the higher the electrical field. Flashes and strikes The best studied and understood form of lightning is cloud to ground (CG). Although more common, intracloud (IC) and cloud to cloud (CC) flashes are very difficult to study given there are no “physical” points to monitor inside the clouds. Also, given the very low probability lightning will strike the same point repeatedly and consistently, scientific inquiry is difficult at best even in the areas of high CG frequency. As such, knowing flash propagation is similar amongst all forms of lightning, the best means to describe the process is through an examination of the most studied form, cloud to ground. Lightning leaders In a process not well understood, a bidirectional channel of ionized air, called a “leader”, is initiated between oppositely-charged regions in a thundercloud. Leaders are electrically conductive channels of ionized gas that propagate through, or are otherwise attracted to, regions with a charge opposite of that of the leader tip. The negative end of the bidirectional leader fills a positive charge region, also called a well, inside the cloud while the positive end fills a negative charge well. Leaders often split, forming branches in a tree-like pattern. In addition, negative and some positive leaders travel in a discontinuous fashion, in a process called “stepping”. The resulting jerky movement of the leaders can be readily observed in slow-motion videos of lightning flashes. It is possible for one end of the leader to fill the oppositely-charged well entirely while the other end is still active. When this happens, the leader end which filled the well may propagate outside of the thundercloud and result in either a cloud-to-air flash or a cloud-to-ground flash. In a typical cloud-to-ground flash, a bidirectional leader initiates between the main negative and lower positive charge regions in a thundercloud. The weaker positive charge region is filled quickly by the negative leader which then propagates toward the inductively-charged ground. The positively and negatively charged leaders proceed in opposite directions, positive upwards within the cloud and negative towards the earth. Both ionic channels proceed, in their respective directions, in a number of successive spurts. Each leader “pools” ions at the leading tips, shooting out one or more new leaders, momentarily pooling again to concentrate charged ions, then shooting out another leader. The negative leader continues to propagate and split as it heads downward, often speeding up as it gets closer to the Earth’s surface. About 90% of ionic channel lengths between “pools” are approximately 45 m (148 foot) in length. The establishment of the ionic channel takes a comparatively long amount of time (hundreds of milliseconds) in comparison to the resulting discharge, which occurs within a few dozen microseconds. The electric current needed to establish the channel, measured in the tens or hundreds of amperes, is dwarfed by subsequent currents during the actual discharge. Initiation of the lightning leaders is not well understood. The electric field strength within the thundercloud is not typically large enough to initiate this process by itself. Many hypotheses have been proposed. One theory postulates that showers of relativistic electrons are created by cosmic rays and are then accelerated to higher velocities via a process called runaway breakdown. As these relativistic electrons collide and ionize neutral air molecules, they initiate leader formation. Another theory invokes locally enhanced electric fields being formed near elongated water droplets or ice crystals. Percolation theory, especially for the case of biased percolation, describes random connectivity phenomena, which produce an evolution of connected structures similar to that of lightning strikes. Upward streamers When a stepped leader approaches the ground, the presence of opposite charges on the ground enhances the strength of the electric field. The electric field is strongest on grounded objects whose tops are closest to the base of the thundercloud, such as trees and tall buildings. If the electric field is strong enough, a positively charged ionic channel, called a positive or upward streamer, can develop from these points. This was first theorized by Heinz Kasemir. As negatively charged leaders approach, increasing the localized electric field strength, grounded objects already experiencing corona discharge exceed a threshold and form upward streamers. Attachment Once a downward leader connects to an available upward leader, a process referred to as attachment, a low-resistance path is formed and discharge may occur. Photographs have been taken in which unattached streamers are clearly visible. The unattached downward leaders are also visible in branched lightning, none of which are connected to the earth, although it may appear they are. High-speed videos can show the attachment process in progress. Discharge Return stroke Once a conductive channel bridges the air gap between the negative charge excess in the cloud and the positive surface charge excess below, there is a large drop in resistance across the lightning channel. Electrons accelerate rapidly as a result in a zone beginning at the point of attachment, which expands across the entire leader network at a fraction of the speed of light. This is the ‘return stroke’ and it is the most luminous and noticeable part of the lightning discharge. A large electric current flows along the plasma channel from the cloud to the ground, neutralizing the positive ground charge as electrons flow away from the strike point to the surrounding area. This huge surge of current creates large radial voltage differences along the surface of the ground. Called step potentials, they are responsible for more injuries and deaths than the strike itself. Electricity takes every path available to it. A portion of the return stroke current will often preferentially flow through one leg and out another, electrocuting an unlucky human or animal standing near the point where the lightning strikes. The electric current of the return stroke averages 30 kiloamperes for a typical negative CG flash, often referred to as “negative CG” lightning. In some cases, a ground to cloud (GC) lightning flash may originate from a positively charged region on the ground below a storm. These discharges normally originate from the tops of very tall structures, such as communications antennas. The rate at which the return stroke current travels has been found to be around 100,000 km/s. The massive flow of electric current occurring during the return stroke combined with the rate at which it occurs (measured in microseconds) rapidly superheats the completed leader channel, forming a highly electrically conductive plasma channel. The core temperature of the plasma during the return stroke may exceed 50,000 K, causing it to brilliantly radiate with a blue-white color. Once the electric current stops flowing, the channel cools and dissipates over tens or hundreds of milliseconds, often disappearing as fragmented patches of glowing gas. The nearly instantaneous heating during the return stroke causes the air to expand explosively, producing a powerful shock wave which is heard as thunder. Re-strike High-speed videos (examined frame-by-frame) show that most negative CG lightning flashes are made up of 3 or 4 individual strokes, though there may be as many as 30. Each re-strike is separated by a relatively large amount of time, typically 40 to 50 milliseconds, as other charged regions in the cloud are discharged in subsequent strokes. Re-strikes often cause a noticeable “strobe light” effect. To understand why multiple return strokes utilize the same lightning channel, one needs to understand the behavior of positive leaders, which a typical ground flash effectively becomes following the negative leader’s connection with the ground. Positive leaders decay more rapidly than negative leaders do. For reasons not well understood, bidirectional leaders tend to initiate on the tips of the decayed positive leaders in which the negative end attempts to re-ionize the leader network. These leaders, also called recoil leaders, usually decay shortly after their formation. When they do manage to make contact with a conductive portion of the main leader network, a return stroke-like process occurs and a dart leader travels across all or a portion of the length of the original leader. The dart leaders making connections with the ground are what cause a majority of subsequent return strokes. Each successive stroke is preceded by intermediate dart leader strokes that have a faster rise time but lower amplitude than the initial return stroke. Each subsequent stroke usually re-uses the discharge channel taken by the previous one, but the channel may be offset from its previous position as wind displaces the hot channel. Since recoil and dart leader processes do not occur on negative leaders, subsequent return strokes very seldom utilize the same channel on positive ground flashes which are explained later in the article. Transient currents during flash The electric current within a typical negative CG lightning discharge rises very quickly to its peak value in 1–10 microseconds, then decays more slowly over 50–200 microseconds. The transient nature of the current within a lightning flash results in several phenomena that need to be addressed in the effective protection of ground-based structures. Rapidly changing currents tend to travel on the surface of a conductor, in what is called the skin effect, unlike direct currents, which “flow-through” the entire conductor like water through a hose. Hence, conductors used in the protection of facilities tend to be multi-stranded, with small wires woven together. This increases the total bundle surface area in inverse proportion to the individual strand radius, for a fixed total cross-sectional area. The rapidly changing currents also create electromagnetic pulses (EMPs) that radiate outward from the ionic channel. This is a characteristic of all electrical discharges. The radiated pulses rapidly weaken as their distance from the origin increases. However, if they pass over conductive elements such as power lines, communication lines, or metallic pipes, they may induce a current which travels outward to its termination. The surge current is inversely related to the Surge impedance … so the higher in impedance, then the lower the current. This is the “surge” that, more often than not, results in the destruction of delicate electronics, electrical appliances, or electric motors. Devices known as surge protectors (SPD) or transient voltage surge suppressors (TVSS) attached in parallel with these lines can detect the lightning flash’s transient irregular current, and, through alteration of its physical properties, route the spike to an attached earthing ground, thereby protecting the equipment from damage. Types There are three primary types of lightning, defined by what is at the “ends” of a flash channel. Intracloud (IC), which occurs within a single thundercloud unit Cloud to cloud (CC) or intercloud, which starts and ends between two different “functional” thundercloud units Cloud to ground (CG), which primarily originates in the thundercloud and terminates on an Earth surface, but may also occur in the reverse direction, which is ground to cloud There are variations of each type, such as “positive” versus “negative” CG flashes, which have different physical characteristics common to each which can be measured. Different common names used to describe a particular lightning event may be attributed to the same or different events. Cloud to ground (CG) Cloud-to-ground (CG) lightning is a lightning discharge between a thundercloud and the ground. It is initiated by a stepped leader moving down from the cloud, which is met by a streamer moving up from the ground. CG is the least common, but best understood of all types of lightning. It is easier to study scientifically, because it terminates on a physical object, namely the Earth, and lends itself to being measured by instruments on the ground. Of the three primary types of lightning, it poses the greatest threat to life and property since it terminates or “strikes” the Earth. The overall discharge, termed a flash, is composed of a number of processes such as preliminary breakdown, stepped leaders, connecting leaders, return strokes, dart leaders and subsequent return strokes. Positive and negative lightning Cloud-to-ground (CG) lightning is either positive or negative, as defined by the direction of the conventional electric current from cloud to ground. Most CG lightning is negative, meaning that a negative charge is transferred to ground and electrons travel downward along the lightning channel. The reverse happens in a positive CG flash, where electrons travel upward along the lightning channel and a positive charge is transferred to the ground. Positive lightning is less common than negative lightning, and on average makes up less than 5% of all lightning strikes. There are six different mechanisms theorized to result in the formation of downward positive lightning. Vertical wind shear displacing the upper positive charge region of a thundercloud, exposing it to the ground below. The loss of lower charge regions in the dissipating stage of a thunderstorm, leaving the primary positive charge region. A complex arrangement of charge regions in a thundercloud, effectively resulting in an inverted dipole or inverted tripole in which the main negative charge region is above the main positive charge region instead of beneath it. An unusually large lower positive charge region in the thundercloud. Cutoff of an extended negative leader from its origin which creates a new bidirectional leader in which the positive end strikes the ground, commonly seen in anvil-crawler spider flashes. The initiation of a downward positive branch from an intracloud lightning flash. Contrary to popular belief, positive lightning flashes do not necessarily originate from the anvil or the upper positive charge region and strike a rain-free area outside of the thunderstorm. This belief is based on the outdated idea that lightning leaders are unipolar in nature and originating from their respective charge region. Positive lightning strikes tend to be much more intense than their negative counterparts. An average bolt of negative lightning carries an electric current of 30,000 amperes (30 kA), and transfers 15 coulombs of electric charge and 1 gigajoule of energy. Large bolts of negative lightning can carry up to 120 kA and 350 C. The average positive ground flash has roughly double the peak current of a typical negative flash, and can produce peak currents up to 400 kA and charges of several hundred coulombs. Furthermore, positive ground flashes with high peak currents are commonly followed by long continuing currents, a correlation not seen in negative ground flashes. As a result of their greater power, as well as lack of warning, positive lightning strikes are considerably more dangerous. Due to the aforementioned tendency for positive ground flashes to produce both high peak currents and long continuing current, they are capable of heating surfaces to much higher levels which increases the likelihood of a fire being ignited. Positive lightning has also been shown to trigger the occurrence of upward lightning flashes from the tops of tall structures and is largely responsible for the initiation of sprites several tens of kilometers above ground level. Positive lightning tends to occur more frequently in winter storms, as with thundersnow, during intense tornadoes and in the dissipation stage of a thunderstorm. Huge quantities of extremely low frequency (ELF) and very low frequency (VLF) radio waves are also generated. A unique form of cloud-to-ground lightning exists where lightning appears to exit from the cumulonimbus cloud and propagate a considerable distance through clear air before veering towards, and striking, the ground. For this reason, they are known as “bolts from the blue”. Despite the popular misconception that these are positive lightning strikes due to them seemingly originating from the positive charge region, observations have shown that these are in fact negative flashes. They begin as intracloud flashes within the cloud, the negative leader then exits the cloud from the positive charge region before propagating through clear air and striking the ground some distance away. Cloud to cloud (CC) and intra-cloud (IC) Lightning discharges may occur between areas of cloud without contacting the ground. When it occurs between two separate clouds it is known as inter-cloud lightning, and when it occurs between areas of differing electric potential within a single cloud it is known as intra-cloud lightning. Intra-cloud lightning is the most frequently occurring type. Intra-cloud lightning most commonly occurs between the upper anvil portions and lower reaches of a given thunderstorm. This lightning can sometimes be observed at great distances at night as so-called “sheet lightning”. In such instances, the observer may see only a flash of light without hearing any thunder. Another term used for cloud–cloud or cloud–cloud–ground lightning is “Anvil Crawler”, due to the habit of charge, typically originating beneath or within the anvil and scrambling through the upper cloud layers of a thunderstorm, often generating dramatic multiple branch strokes. These are usually seen as a thunderstorm passes over the observer or begins to decay. The most vivid crawler behavior occurs in well-developed thunderstorms that feature extensive rear anvil shearing. Observational variations Anvil crawler lightning, sometimes called Spider lightning is created when leaders propagate through horizontally-extensive charge regions in mature thunderstorms, usually the stratiform regions of mesoscale convective systems. These discharges usually begin as intracloud discharges originating within the convective region; the negative leader end then propagates well into the aforementioned charge regions in the stratiform area. If the leader becomes too long, it may separate into multiple bidirectional leaders. When this happens, the positive end of the separated leader may strike the ground as a positive CG flash or crawl on the underside of the cloud, creating a spectacular display of lightning crawling across the sky. Ground flashes produced in this manner tend to transfer high amounts of charge, and this can trigger upward lightning flashes and upper-atmospheric lightning. Ball lightning may be an atmospheric electrical phenomenon, the physical nature of which is still controversial. The term refers to reports of luminous, usually spherical objects which vary from pea-sized to several meters in diameter. It is sometimes associated with thunderstorms, but unlike lightning flashes, which last only a fraction of a second, ball lightning reportedly lasts many seconds. Ball lightning has been described by eyewitnesses but rarely recorded by meteorologists. Scientific data on natural ball lightning is scarce owing to its infrequency and unpredictability. The presumption of its existence is based on reported public sightings, and has therefore produced somewhat inconsistent findings. Brett Porter, a wildlife ranger, reported taking a photo at Queensland of Australia in 1987. Bead lightning is the decaying stage of a lightning channel in which the luminosity of the channel breaks up into segments. Nearly every lightning discharge will exhibit beading as the channel cools immediately after a return stroke, sometimes referred to as the lightning’s ‘bead-out’ stage. ‘Bead lightning’ is more properly a stage of a normal lightning discharge rather than a type of lightning in itself. Beading of a lightning channel is usually a small-scale feature, and therefore is often only apparent when the observer/camera is close to the lightning. Cloud-to-air lightning is a lightning flash in which one end of a bidirectional leader exits the cloud, but does not result in a ground flash. Such flashes can sometimes be thought of as failed ground flashes. Blue jets and gigantic jets are a form of cloud-to-air or cloud-to-ionosphere lightning where a leader is launched from the top of a thunderstorm. Dry lightning is used in Australia, Canada and the United States for lightning that occurs with no precipitation at the surface. This type of lightning is the most common natural cause of wildfires. Pyrocumulus clouds produce lightning for the same reason that it is produced by cumulonimbus clouds. Forked lightning is cloud-to-ground lightning that exhibits branching of its path. Heat lightning is a lightning flash that appears to produce no discernible thunder because it occurs too far away for the thunder to be heard. The sound waves dissipate before they reach the observer. Ribbon lightning occurs in thunderstorms with high cross winds and multiple return strokes. The wind will blow each successive return stroke slightly to one side of the previous return stroke, causing a ribbon effect. Rocket lightning is a form of cloud discharge, generally horizontal and at cloud base, with a luminous channel appearing to advance through the air with visually resolvable speed, often intermittently. Sheet lightning is cloud-to-cloud lightning that exhibits a diffuse brightening of the surface of a cloud, caused by the actual discharge path being hidden or too far away. The lightning itself cannot be seen by the spectator, so it appears as only a flash, or a sheet of light. The lightning may be too far away to discern individual flashes. Smooth channel lightning is an informal term referring to a type of cloud-to-ground lightning strike that has no visible branching and appears like a line with smooth curves as opposed to the jagged appearance of most lightning channels. They are a form of positive lightning generally observed in or near the convective regions of severe thunderstorms in the north central United States. It is theorized that severe thunderstorms in this region obtain an “inverted tripole” charge structure in which the main positive charge region is located below the main negative charge region instead of above it, and as a result these thunderstorms generate predominantly positive cloud-to-ground lightning. The term “smooth channel lightning” is also sometimes attributed to upward ground-to-cloud lightning flashes, which are generally negative flashes initiated by upward positive leaders from tall structures. Staccato lightning is a cloud-to-ground lightning (CG) strike which is a short-duration stroke that (often but not always) appears as a single very bright flash and often has considerable branching. These are often found in the visual vault area near the mesocyclone of rotating thunderstorms and coincides with intensification of thunderstorm updrafts. A similar cloud-to-cloud strike consisting of a brief flash over a small area, appearing like a blip, also occurs in a similar area of rotating updrafts. Superbolts are rather loosely defined as strikes with a source energy of more than 100 gigajoule [100 GJ] (most lightning strikes come in at around 1 gigajoule [1 GJ]). Events of this magnitude occur about as frequently as one in 240 strikes. They are not categorically distinct from ordinary lightning strikes, and simply represent the uppermost edge of a continuum. Contrary to popular misconception, superbolts can be either positively or negatively charged, and the charge ratio is comparable to that of “ordinary” lightning. Sympathetic lightning is the tendency of lightning to be loosely coordinated across long distances. Discharges can appear in clusters when viewed from space. Upward lightning or ground-to-cloud lightning is a lightning flash which originates from the top of a grounded object and propagates upward from this point. This type of lightning can be triggered by a preceding lightning flash, or it may initiate entirely on its own. The former is generally found in regions where spider lightning occurs, and may involve multiple grounded objects simultaneously. The latter usually occurs during the cold season and may be the dominant lightning type in thundersnow events. Clear-air lightning describes lightning that occurs with no apparent cloud close enough to have produced it. In the U.S. and Canadian Rockies, a thunderstorm can be in an adjacent valley and not observable from the valley where the lightning bolt strikes, either visually or audibly. European and Asian mountainous areas experience similar events. Also in areas such as sounds, large lakes or open plains, when the storm cell is on the near horizon (within 26 km or 16 mi) there may be some distant activity, a strike can occur and as the storm is so far away, the strike is referred to as a bolt from the blue. These flashes usually begin as normal intracloud lightning flashes before the negative leader exits the cloud and strikes the ground a considerable distance away. Positive clear-air strikes can occur in highly sheared environments where the upper positive charge region becomes horizontally displaced from the precipitation area. Effects Lightning strike Objects struck by lightning experience heat and magnetic forces of great magnitude. The heat created by lightning currents traveling through a tree may vaporize its sap, causing a steam explosion that bursts the trunk. As lightning travels through sandy soil, the soil surrounding the plasma channel may melt, forming tubular structures called fulgurites. Although 90 percent of people struck by lightning survive, humans or animals struck by lightning may suffer severe injury due to internal organ and nervous system damage. Buildings or tall structures hit by lightning may be damaged as the lightning seeks unintended paths to ground. By safely conducting a lightning strike to ground, a lightning protection system can greatly reduce the probability of severe property damage. Lightning also serves an important role in the nitrogen cycle by oxidizing diatomic nitrogen in the air into nitrates which are deposited by rain and can fertilize the growth of plants and other organisms. Due to their metallic fuselages, aircraft are highly susceptible to lightning strikes, though it does not cause much harm to the aircraft or its passengers, aside from a small 0hole in the wings. Due to the conductive properties of Aluminium alloy, the fuselage acts as a Faraday cage. Thunder Because the electrostatic discharge of terrestrial lightning superheats the air to plasma temperatures along the length of the discharge channel in a short duration, kinetic theory dictates gaseous molecules undergo a rapid increase in pressure and thus expand outward from the lightning creating a shock wave audible as thunder. Since the sound waves propagate not from a single point source but along the length of the lightning’s path, the sound origin’s varying distances from the observer can generate a rolling or rumbling effect. Perception of the sonic characteristics is further complicated by factors such as the irregular and possibly branching geometry of the lightning channel, by acoustic echoing from terrain, and by the usually multiple-stroke characteristic of the lightning strike. Light travels at about 300,000,000 m/s (980,000,000 foot/s), and sound travels through air at about 343 m/s (1,130 feet/s). An observer can approximate the distance to the strike by timing the interval between the visible lightning and the audible thunder it generates. A lightning flash preceding its thunder by one second would be approximately 343 m (1,125 foot) in distance; a delay of three seconds would indicate a distance of about 1 km or 0.62 mi (3 × 343 m). A flash preceding thunder by five seconds would indicate a distance of approximately 1.5 km or 0.93 mi (5 × 343 m). Consequently, a lightning strike observed at a very close distance will be accompanied by a sudden clap of thunder, with almost no perceptible time lapse, possibly accompanied by the smell of ozone (O3). Lightning at a sufficient distance may be seen and not heard; there is data that a lightning storm can be seen at over 160 km (100 mi) whereas the thunder travels about 32 km (20 mi). Anecdotally, there are many examples of people saying ‘the storm was directly overhead or all-around and yet there was no thunder’. There is no coherent data available. Thunderstorm A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and its acoustic effect on the Earth’s atmosphere, known as thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in a type of cloud known as a cumulonimbus. They are usually accompanied by strong winds, and often produce heavy rain and sometimes snow, sleet, or hail, but some thunderstorms produce little precipitation or no precipitation at all. Thunderstorms may line up in a series or become a rainband, known as a squall line. Strong or severe thunderstorms include some of the most dangerous weather phenomena, including large hail, strong winds, and tornadoes. Some of the most persistent severe thunderstorms, known as supercells, rotate as do cyclones. While most thunderstorms move with the mean wind flow through the layer of the troposphere that they occupy, vertical wind shear sometimes causes a deviation in their course at a right angle to the wind shear direction. Thunderstorms result from the rapid upward movement of warm, moist air, sometimes along a front. As the warm, moist air moves upward, it cools, condenses, and forms a cumulonimbus cloud that can reach heights of over 20 kilometres (12 mi). As the rising air reaches its dew point temperature, water vapor condenses into water droplets or ice, reducing pressure locally within the thunderstorm cell. Any precipitation falls the long distance through the clouds towards the Earth’s surface. As the droplets fall, they collide with other droplets and become larger. The falling droplets create a downdraft as it pulls cold air with it, and this cold air spreads out at the Earth’s surface, occasionally causing strong winds that are commonly associated with thunderstorms. Thunderstorms can form and develop in any geographic location but most frequently within the mid-latitude, where warm, moist air from tropical latitudes collides with cooler air from polar latitudes. Thunderstorms are responsible for the development and formation of many severe weather phenomena. Thunderstorms, and the phenomena that occur along with them, pose great hazards. Damage that results from thunderstorms is mainly inflicted by downburst winds, large hailstones, and flash flooding caused by heavy precipitation. Stronger thunderstorm cells are capable of producing tornadoes and waterspouts. There are four types of thunderstorms: single-cell, multi-cell cluster, multi-cell lines and supercells. Supercell thunderstorms are the strongest and most severe. Mesoscale convective systems formed by favorable vertical wind shear within the tropics and subtropics can be responsible for the development of hurricanes. Dry thunderstorms, with no precipitation, can cause the outbreak of wildfires from the heat generated from the cloud-to-ground lightning that accompanies them. Several means are used to study thunderstorms: weather radar, weather stations, and video photography. Past civilizations held various myths concerning thunderstorms and their development as late as the 18th century. Beyond the Earth’s atmosphere, thunderstorms have also been observed on the planets of Jupiter, Saturn, Neptune, and, probably, Venus. High-energy radiation The production of X-rays by a bolt of lightning was theoretically predicted as early as 1925, but no evidence was found until 2001/2002, when researchers at the New Mexico Institute of Mining and Technology detected X-ray emissions from an induced lightning strike along a grounded wire trailed behind a rocket shot into a storm cloud. In the same year the University of Florida and Florida Tech researchers used an array of electric field and X-ray detectors at a lightning research facility in North Florida to confirm that natural lightning makes X-rays in large quantities during the propagation of stepped leaders. The cause of the X-ray emissions is still a matter for research, as the temperature of lightning is too low to account for the X-rays observed. A number of observations by space-based telescopes have revealed even higher energy gamma ray emissions, the so-called terrestrial gamma-ray flashes (TGFs). These observations pose a challenge to current theories of lightning, especially with the recent discovery of the clear signatures of antimatter produced in lightning. Recent research has shown that secondary species, produced by these TGFs, such as electrons, positrons, neutrons or protons, can gain energies of up to several tens of MeV. Air quality The very high temperatures generated by lightning lead to significant local increases in ozone and oxides of nitrogen. Each lightning flash in temperate and sub-tropical areas produces 7 kg of NOx on average. In the troposphere the effect of lightning can increase NOx by 90% and ozone by 30%. Volcanic Volcanic activity produces lightning-friendly conditions in multiple ways. The enormous quantity of pulverized material and gases explosively ejected into the atmosphere creates a dense plume of particles. The ash density and constant motion within the volcanic plume produces charge by frictional interactions (triboelectrification), resulting in very powerful and very frequent flashes as the cloud attempts to neutralize itself. Due to the extensive solid material (ash) content, unlike the water rich charge generating zones of a normal thundercloud, it is often called a dirty thunderstorm. Powerful and frequent flashes have been witnessed in the volcanic plume as far back as the 79 AD eruption of Vesuvius by Pliny the Younger. Likewise, vapors and ash originating from vents on the volcano’s flanks may produce more localized and smaller flashes upwards of 2.9 km long. Small, short duration sparks, recently documented near newly extruded magma, attest to the material being highly charged prior to even entering the atmosphere. Extraterrestrial Lightning has been observed within the atmospheres of other planets, such as Jupiter and Saturn. Although in the minority on Earth, superbolts appear to be common on Jupiter. Lightning on Venus has been a controversial subject after decades of study. During the Soviet Venera and U.S. Pioneer missions of the 1970s and 1980s, signals suggesting lightning may be present in the upper atmosphere were detected. Although the Cassini–Huygens mission fly-by of Venus in 1999 detected no signs of lightning, the observation window lasted mere hours. Radio pulses recorded by the spacecraft Venus Express (which began orbiting Venus in April 2006) may originate from lightning on Venus. Human-related phenomena Airplane contrails have also been observed to influence lightning to a small degree. The water vapor-dense contrails of airplanes may provide a lower resistance pathway through the atmosphere having some influence upon the establishment of an ionic pathway for a lightning flash to follow. Rocket exhaust plumes provided a pathway for lightning when it was witnessed striking the Apollo 12 rocket shortly after takeoff. Thermonuclear explosions by providing extra material for electrical conduction and a very turbulent localized atmosphere, have been seen triggering lightning flashes within the mushroom cloud. In addition, intense gamma radiation from large nuclear explosions may develop intensely charged regions in the surrounding air through Compton scattering. The intensely charged space charge regions create multiple clear-air lightning discharges shortly after the device detonates. Scientific study Properties Thunder is heard as a rolling, gradually dissipating rumble because the sound from different portions of a long stroke arrives at slightly different times. When the local electric field exceeds the dielectric strength of damp air (about 3 megavolts per meter), electrical discharge results in a strike, often followed by commensurate discharges branching from the same path. (See image, right.) Mechanisms that cause the charges to build up to lightning are still a matter of scientific investigation. New study confirming dielectric breakdown is involved. Rison 2016. Lightning may be caused by the circulation of warm moisture-filled air through electric fields. Ice or water particles then accumulate charge as in a Van de Graaff generator. Researchers at the University of Florida found that the final one-dimensional speeds of 10 flashes observed were between 1.0×105 and 1.4×106 m/s, with an average of 4.4×105 m/s. Detection and monitoring The earliest detector invented to warn of the approach of a thunder storm was the lightning bell. Benjamin Franklin installed one such device in his house. The detector was based on an electrostatic device called the ‘electric chimes’ invented by Andrew Gordon in 1742. Lightning discharges generate a wide range of electromagnetic radiations, including radio-frequency pulses. The times at which a pulse from a given lightning discharge arrives at several receivers can be used to locate the source of the discharge. The United States federal government has constructed a nationwide grid of such lightning detectors, allowing lightning discharges to be tracked in real time throughout the continental U.S. The Earth-ionosphere waveguide traps electromagnetic VLF- and ELF waves. Electromagnetic pulses transmitted by lightning strikes propagate within that waveguide. The waveguide is dispersive, which means that their group velocity depends on frequency. The difference of the group time delay of a lightning pulse at adjacent frequencies is proportional to the distance between transmitter and receiver. Together with direction finding methods, this allows locating lightning strikes up to distances of 10,000 km from their origin. Moreover, the Eigen frequencies of the Earth-ionospheric waveguide, the Schumann resonances at about 7.5 Hz, are used to determine the global thunderstorm activity. In addition to ground-based lightning detection, several instruments aboard satellites have been constructed to observe lightning distribution. These include the Optical Transient Detector (OTD), aboard the OrbView-1 satellite launched on April 3, 1995, and the subsequent Lightning Imaging Sensor (LIS) aboard TRMM launched on November 28, 1997. Artificially triggered Rocket-triggered lightning can be “triggered” by launching specially designed rockets trailing spools of wire into thunderstorms. The wire unwinds as the rocket ascends, creating an elevated ground that can attract descending leaders. If a leader attaches, the wire provides a low-resistance pathway for a lightning flash to occur. The wire is vaporized by the return current flow, creating a straight lightning plasma channel in its place. This method allows for scientific research of lightning to occur under a more controlled and predictable manner. The International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, Florida typically uses rocket triggered lightning in their research studies. Laser-triggered Since the 1970s, researchers have attempted to trigger lightning strikes by means of infrared or ultraviolet lasers, which create a channel of ionized gas through which the lightning would be conducted to ground. Such triggering of lightning is intended to protect rocket launching pads, electric power facilities, and other sensitive targets. In New Mexico, U.S., scientists tested a new terawatt laser which provoked lightning. Scientists fired ultra-fast pulses from an extremely powerful laser thus sending several terawatts into the clouds to call down electrical discharges in storm clouds over the region. The laser beams sent from the laser make channels of ionized molecules known as “filaments”. Before the lightning strikes earth, the filaments lead electricity through the clouds, playing the role of lightning rods. Researchers generated filaments that lived a period too short to trigger a real lightning strike. Nevertheless, a boost in electrical activity within the clouds was registered. According to the French and German scientists who ran the experiment, the fast pulses sent from the laser will be able to provoke lightning strikes on demand. Statistical analysis showed that their laser pulses indeed enhanced the electrical activity in the thundercloud where it was aimed—in effect they generated small local discharges located at the position of the plasma channels. Physical manifestations Magnetism The movement of electrical charges produces a magnetic field (see electromagnetism). The intense currents of a lightning discharge create a fleeting but very strong magnetic field. Where the lightning current path passes through rock, soil, or metal these materials can become permanently magnetized. This effect is known as lightning-induced remnant magnetism, or LIRM. These currents follow the least resistive path, often horizontally near the surface, but sometimes vertically, where faults, ore bodies, or ground water offers a less resistive path. One theory suggests that lodestones, natural magnets encountered in ancient times, were created in this manner. Lightning-induced magnetic anomalies can be mapped in the ground, and analysis of magnetized materials can confirm lightning was the source of the magnetization and provide an estimate of the peak current of the lightning discharge. Research at the University of Innsbruck has found that magnetic fields generated by plasma may induce hallucinations in subjects located within 200 m (660 ft) of a severe lightning storm. Solar wind and cosmic rays Some high energy cosmic rays produced by supernovas as well as solar particles from the solar wind, enter the atmosphere and electrify the air, which may create pathways for lightning bolts. In culture and religion In many cultures, lightning has been viewed as part of a deity or a deity in and of itself. These include the Greek god Zeus, the Aztec god Tlaloc, the Mayan God K, Slavic mythology’s Perun, the Baltic Pērkons/Perkūnas, Thor in Norse mythology, Ukko in Finnish mythology, the Hindu god Indra, and the Shinto god Raijin. In the traditional religion of the African Bantu tribes, lightning is a sign of the ire of the gods. Verses in the Jewish religion and in Islam also ascribe supernatural importance to lightning. In Christianity, the Second Coming of Jesus is compared to lightning. [Matthew 24:27][Luke 17:24] The expression “Lightning never strikes twice (in the same place)” is similar to “Opportunity never knocks twice” in the vein of a “once in a lifetime” opportunity, i.e., something that is generally considered improbable. Lightning occurs frequently and more so in specific areas. Since various factors alter the probability of strikes at any given location, repeat lightning strikes have a very low probability (but are not impossible). Similarly, “A bolt from the blue” refers to something totally unexpected, and “A person being struck by lightning” is an imaginative or comedic metaphor for someone to experience a once in a lifetime, striking, sudden lightning-speed revelation, similar to an epiphany or an enlightenment. Some political parties use lightning flashes as a symbol of power, such as the People’s Action Party in Singapore, the British Union of Fascists during the 1930s, and the National States’ Rights Party in the United States during the 1950s. The Schutzstaffel, the paramilitary wing of the Nazi Party, used the Sig rune in their logo which symbolizes lightning. The German word Blitzkrieg, which means “lightning war”, was a major offensive strategy of the German army during World War II. In French and Italian, the expression for “Love at first sight” is coup de foudre and colpo di fulmine, respectively, which literally translated means “lightning strike”. Some European languages have a separate word for lightning which strikes the ground (as opposed to lightning in general); often it is a cognate of the English word “rays”. The name of Australia’s most celebrated thoroughbred horse, Phar Lap, derives from the shared Zhuang and Thai word for lightning. The bolt of lightning in heraldry is called a thunderbolt and is shown as a zigzag with non-pointed ends. This symbol usually represents power and speed. The lightning bolt is used to represent the instantaneous communication capabilities of electrically powered telegraphs and radios. It was a commonly used motif in Art Deco design, especially the zig-zag Art Deco design of the late 1920s. The lightning bolt is a common insignia for military communications units throughout the world. A lightning bolt is also the NATO symbol for a signal asset. The Unicode symbol for lightning is ☇ U+2607. Polytheistic peoples of many cultures have postulated a thunder god, the personification or source of the forces of thunder and lightning; a lightning god does not have a typical depiction, and will vary based on the culture. In Indo-European cultures, the thunder god is frequently known as the chief or King of the Gods, e.g. Indra in Hinduism, Zeus in Greek mythology, and Perun in ancient Slavic religion. The Hindu God Indra was the chief deity and at his prime during the Vedic period, where he was considered to be the supreme God. Indra was initially recorded in the Rigveda, the first of the religious scriptures that comprise the Vedas. Indra continued to play a prominent role throughout the evolution of Hinduism and played a pivotal role in the two Sanskrit epics that comprise the Itihasas, appearing in both the Ramayana and Mahabharata. Although the importance of Indra has since been subsided in favor of other Gods in contemporary Hinduism, he is still venerated and worshipped. In Greek mythology, the Elysian Fields, or the Elysian Plains, was the final resting places of the souls of the heroic and the virtuous, evolved from a designation of a place or person struck by lightning, enelysion and enelysios. This could be a reference to Zeus, the god of lightning, so “lightning-struck” could be saying that the person was blessed (struck) by Zeus. Egyptologist Jan Assmann has also suggested that Greek Elysion may have instead been derived from the Egyptian term ialu, meaning “reeds,” with specific reference to the “Reed fields”, a paradisiacal land of plenty where the dead hoped to spend eternity. Deities One of the most classic portrayals of this is of the Greek god Zeus. An ancient story recounts when Zeus was at war against Cronus and the Titans, he released his brothers, Hades and Poseidon, along with the Cyclopes. In turn, the Cyclopes gave Zeus the thunderbolt as a weapon. The thunderbolt became a popular symbol of Zeus and continues to be today. In Slavic mythology the highest god of the pantheon is Perun, the god of thunder and lightning. Pērkons/Perkūnas is the common Baltic god of thunder, one of the most important deities in the Baltic pantheon. In both Latvian and Lithuanian mythology, he is documented as the god of thunder, rain, mountains, oak trees and the sky. In Norse mythology, Thor is the god of thunder and the sound of thunder comes from the chariot he rides across the sky. The lightning comes from his hammer Mjölnir. In Finnish mythology, Ukko is the god of thunder, sky and weather. The Finnish word for thunder is ukkonen, derived from the god’s name. In Judaism, a blessing “…He who does acts of creation” is to be recited, upon sighting lightning. The Talmud refers to the Hebrew word for the sky, (“Shamaim”) – as built from fire and water (“Esh Umaim”), since the sky is the source of the inexplicable mixture of “fire” and water that come together, during rainstorms. This is mentioned in various prayers, Psalm 29, and discussed in writings of Kabbalah. In Islam, the Quran states: “He it is Who showeth you the lightning, a fear and a hope, and raiseth the heavy clouds. The thunder hymneth His praise and (so do) the angels for awe of Him. He launcheth the thunder-bolts and smiteth with them whom He will.” (Qur’an 13:12–13) and, “Have you not seen how God makes the clouds move gently, then joins them together, then makes them into a stack, and then you see the rain come out of it…” (Quran, 24:43). The preceding verse, after mentioning clouds and rain, speaks about hail and lightning, “…And He sends down hail from mountains (clouds) in the sky, and He strikes with it whomever He wills, and turns it from whomever He wills.” In India, the Hindu god Indra is considered the god of rains and lightning and the king of the Devas. In Japan, the Shinto god Raijin is considered the god of lightning and thunder. He is depicted as a demon who strikes a drum to create lightning. In the traditional religion of the African Bantu tribes, such as the Baganda and Banyoro of Uganda, lightning is a sign of the ire of the gods. The Baganda specifically attribute the lightning phenomenon to the god Kiwanuka, one of the main trio in the Lubaale gods of the sea or lake. Kiwanuka starts wild fires, strikes trees and other high buildings, and a number of shrines are established in the hills, mountains and plains to stay in his favor. Lightning is also known to be invoked upon one’s enemies by uttering certain chants, prayers, and making sacrifices. Lightning is an electrical discharge caused by imbalances between storm clouds and the ground, or within the clouds themselves. Most lightning occurs within the clouds. “Sheet lightning” describes a distant bolt that lights up an entire cloud base. Other visible bolts may appear as bead, ribbon, or rocket lightning. During a storm, colliding particles of rain, ice, or snow inside storm clouds increase the imbalance between storm clouds and the ground, and often negatively charge the lower reaches of storm clouds. Objects on the ground, like steeples, trees, and the Earth itself, become positively charged—creating an imbalance that nature seeks to remedy by passing current between the two charges. Lightning is extremely hot—a flash can heat the air around it to temperatures five times hotter than the sun’s surface. This heat causes surrounding air to rapidly expand and vibrate, which creates the pealing thunder we hear a short time after seeing a lightning flash. Types of Lightning Cloud-to-ground lightning bolts are a common phenomenon—about 100 strike Earth’s surface every single second—yet their power is extraordinary. Each bolt can contain up to one billion volts of electricity. A typical cloud-to-ground lightning bolt begins when a step-like series of negative charges, called a stepped leader, races downward from the bottom of a storm cloud toward the Earth along a channel at about 200,000 mph (300,000 kph). Each of these segments is about 150 feet (46 meters) long. When the lowermost step comes within 150 feet (46 meters) of a positively charged object, it is met by a climbing surge of positive electricity, called a streamer, which can rise up through a building, a tree, or even a person. When the two connect, an electrical current flows as negative charges fly down the channel towards earth and a visible flash of lightning streaks upward at some 200,000,000 mph (300,000,000 kph), transferring electricity as lightning in the process. Some types of lightning, including the most common types, never leave the clouds but travel between differently charged areas within or between clouds. Other rare forms can be sparked by extreme forest fires, volcanic eruptions, and snowstorms. Ball lightning, a small, charged sphere that floats, glows, and bounces along oblivious to the laws of gravity or physics, still puzzles scientists. About one to 20 cloud-to-ground lightning bolts is “positive lightning,” a type that originates in the positively charged tops of stormclouds. These strikes reverse the charge flow of typical lightning bolts and are far stronger and more destructive. Positive lightning can stretch across the sky and strike “out of the blue” more than 10 miles from the storm cloud where it was born. The Impact of a Lightning Strike Lightning is not only spectacular, it’s dangerous. About 2,000 people are killed worldwide by lightning each year. Hundreds more survive strikes but suffer from a variety of lasting symptoms, including memory loss, dizziness, weakness, numbness, and other life-altering ailments. Strikes can cause cardiac arrest and severe burns, but 9 of every 10 people survive. The average American has about a 1 in 5,000 chance of being struck by lightning during a lifetime. Lightning’s extreme heat will vaporize the water inside a tree, creating steam that may blow the tree apart. Cars are havens from lightning—but not for the reason that most believe. Tires conduct current, as do metal frames that carry a charge harmlessly to the ground. Many houses are grounded by rods and other protection that conduct a lightning bolt’s electricity harmlessly to the ground. Homes may also be inadvertently grounded by plumbing, gutters, or other materials. Grounded buildings offer protection, but occupants who touch running water or use a landline phone may be shocked by conducted electricity. How Lightning Works Lightning is one of the most beautiful displays in nature. It is also one of the most deadly natural phenomena known to man. With bolt temperatures hotter than the surface of the sun and shockwaves beaming out in all directions, lightning is a lesson in physical science and humility. Beyond its powerful beauty, lightning presents science with one of its greatest local mysteries: How does it work? It is common knowledge that lightning is generated in electrically charged storm systems, but the method of cloud charging still remains elusive. In this article, we will look at lightning from the inside out so that you can understand this phenomenon. Lightning begins with a process that’s less mysterious: the water cycle. To fully understand how the water cycle works, we must first understand the principles of evaporation and condensation. Evaporation is the process by which a liquid absorbs heat and changes to a vapor. A good example is a puddle of water after a rainfall. Why does the puddle dry up? The water in the puddle absorbs heat from the sun and the environment and escapes as a vapor. “Escape” is a good term to use when discussing evaporation. When the liquid is subjected to heat, its molecules move around faster. Some of the molecules may move quickly enough to break away from the surface of the liquid and carry heat away in the form of a vapor or gas. Once free from the constraints of the liquid, the vapor begins to rise into the atmosphere. Condensation is the process by which a vapor or gas loses heat and turns into a liquid. Whenever heat is transferred, it moves from a higher temperature to a lower temperature. A refrigerator uses this concept to cool your food and drinks. It provides a low-temperature environment that absorbs the heat from your beverages and foodstuffs and carries that heat away in what is known as the refrigeration cycle. In this respect, the atmosphere acts like a huge refrigerator to gas and vapors. As the vapors or gases rise, the temperatures in the surrounding air drop lower and lower. Soon, the vapor, which has carried heat away from its “mother” liquid, begins to lose heat to the atmosphere. As it rises to higher altitudes and lower temperatures, eventually enough heat is lost to cause the vapor to condense and return to a liquid state. Let’s now apply these two concepts to the water cycle. Water or moisture on the earth absorbs heat from the sun and the surroundings. When enough heat has been absorbed, some of the liquid’s molecules may have enough energy to escape from the liquid and begin to rise into the atmosphere as a vapor. As the vapor rises higher and higher, the temperature of the surrounding air becomes lower and lower. Eventually, the vapor loses enough heat to the surrounding air to allow it to turn back into a liquid. Earth’s gravitational pull then causes the liquid to “fall” back down to the earth, thereby completing the cycle. It should be noted that if the temperatures in the surrounding air are low enough, the vapor can condense and then freeze into snow or sleet. Once again, gravity will claim the frozen forms and they will return to the earth. Electrical Storms In an electrical storm, the storm clouds are charged like giant capacitors in the sky. The upper portion of the cloud is positive and the lower portion is negative. How the cloud acquires this charge is still not agreed upon within the scientific community, but the following description provides one plausible explanation. In the process of the water cycle, moisture can accumulate in the atmosphere. This accumulation is what we see as a cloud. Interestingly, clouds can contain millions upon millions of water droplets and ice suspended in the air. As the process of evaporation and condensation continues, these droplets collide other moisture that is in the process of condensing as it rises. Also, the rising moisture may collide with ice or sleet that is in the process of falling to the earth or located in the lower portion of the cloud. The importance of these collisions is that electrons are knocked off of the rising moisture, thus creating a charge separation. The newly knocked-off electrons gather at the lower portion of the cloud, giving it a negative charge. The rising moisture that has just lost an electron carries a positive charge to the top of the cloud. Beyond the collisions, freezing plays an important role. As the rising moisture encounters colder temperatures in the upper cloud regions and begins to freeze, the frozen portion becomes negatively charged and the unfrozen droplets become positively charged. At this point, rising air currents have the ability to remove the positively charged droplets from the ice and carry them to the top of the cloud. The remaining frozen portion would likely fall to the lower portion of the cloud or continue on to the ground. Combining the collisions with the freezing, we can begin to understand how a cloud may acquire the extreme charge separation that is required for a lightning strike. When there is a charge separation in a cloud, there is also an electric field that is associated with the separation. Like the cloud, this field is negative in the lower region and positive in the upper region. The strength or intensity of the electric field is directly related to the amount of charge buildup in the cloud. As the collisions and freezing continue to occur and the charges at the top and bottom of the cloud increase, the electric field becomes more and more intense — so intense, in fact, that the electrons at the earth’s surface are repelled deeper into the earth by the strong negative charge at the lower portion of the cloud. This repulsion of electrons causes the earth’s surface to acquire a strong positive charge. All that is needed now is a conductive path for the negative cloud bottom to contact the positive earth surface. The strong electric field, being somewhat self-sufficient, creates this path. Air Ionization The following description is also exactly what occurs when operating a Van de Graaff generator. If you have a hankering to play with lightning, a VDG is definitely the safest way to go and can provide hours of entertainment. The strong electric field causes the air around the cloud to “break down,” allowing current to flow in an attempt to neutralize the charge separation. Simply stated, the air breakdown creates a path that short-circuits the cloud/earth as if there were a long metal rod connecting the cloud to the earth. Here’s how this breakdown works When the electric field becomes very strong (on the order of tens of thousands of volts per inch), conditions are ripe for the air to begin breaking down. The electric field causes the surrounding air to become separated into positive ions and electrons — the air is ionized. Keep in mind that the ionization does not mean that there is more negative charge (electrons) or more positive charge (positive atomic nuclei / positive ions) than before. This ionization only means that the electrons and positive ions are farther apart than they were in their original molecular or atomic structure. Essentially, the electrons have been stripped from the molecular structure of the non-ionized air. The importance of this separation/stripping is that the electrons are now free to move much more easily than they could before the separation. So this ionized air (also known as plasma) is much more conductive than the previous non-ionized air. Incidentally, the ability or freedom of the electrons to move is what makes any material a good conductor of electricity. Often times, metals are referred to as positive atomic nuclei surrounded by a fluid-like cloud of electrons. That makes many metals good conductors of electricity. These electrons have excellent mobility, allowing for electrical current to flow. The ionization of air or gas creates plasma with conductive properties similar to that of metals. Plasma is the tool nature wields to neutralize charge separation in an electric field. Those readers who are familiar with the chemical reaction of fire will recall that oxidation plays an important role. Oxidation is the process by which an atom or molecule loses an electron when combined with oxygen. Simply put, the atom or molecule is changed from a lower positive potential to a higher positive potential. Interestingly enough, the process of ionization, which creates plasma, also occurs through the loss of electrons. By this comparison, we can view the ionization process as “burning a path” through the air for the lightning to follow, much like digging a tunnel through a mountain for a train to follow. Step Leaders Once the ionization process begins and plasma forms, a path is not created instantaneously. In fact, there are usually many separate paths of ionized air stemming from the cloud. These paths are typically referred to as step leaders. The step leaders propagate toward the earth in stages, which do not have to result in a straight line to the earth. The air may not ionize equally in all directions. Dust or impurities (any object) in the air may cause the air to break down more easily in one direction, giving a better chance that the step leader will reach the earth faster in that direction. Also, the shape of the electric field can greatly affect the ionization path. This shape depends on the location of the charged particles, which in this case are located at the bottom of the cloud and the earth’s surface. If the cloud is parallel to the earth’s surface, and the area is small enough that the curvature of the earth is negligible, the two charge locations will behave as two charged parallel plates. The lines of force (electric flux) generated by the charge separation will be perpendicular to the cloud and earth. Flux lines always radiate perpendicularly from the charge surface before moving toward their destination (opposite charge location). Given this knowledge, we can say that if the lower surface of the cloud is not straight, the flux lines will not be uniform. Try this: Draw two points on opposite ends of a basketball. Next, draw a line on the basketball that connects the two points. The curvature of the line is analogous to the flux lines in a non-uniform electric field. The lack of uniform force can cause the step leaders to follow a path that is not a straight line to the earth. Considering these possibilities, it becomes obvious that there are various factors that affect the direction of the step leader. We are taught that the shortest distance between two points is a straight line; but in the case of electric fields, the lines of force (flux lines) may not follow the shortest distance, as the shortest distance does not always represent the path of least resistance. So now we have an electrically charged cloud with ever-growing step leaders stretching out toward the earth in stages. These leaders are faintly illuminated in a purplish glow and may sprout other leaders in areas where the original leaders bend or turn. Once begun, the leader will remain until the current flows, regardless of whether or not it is the leader that reaches the ground first. The leader basically has two possibilities: continue to grow in stages of growing plasma or wait patiently in its present plasma condition until another leader hits a target. The leader that reaches the earth first reaps the rewards of the journey by providing a conductive path between the cloud and the earth. This leader is not the lightning strike; it only maps out the course that the strike will follow. The strike is the sudden, massive, flow of electrical current moving from the cloud to the ground. Positive Streamers and Exploding Air As the step leaders approach the earth, objects on the surface begin responding to the strong electric field. The objects reach out to the cloud by “growing” positive streamers. These streamers also have a purplish color and appear to be more prominent on sharp edges. The human body can and does produce these positive streamers when subjected to a strong electric field such as that of a storm cloud. In actuality, anything on the surface of the earth has the potential to send a streamer. Once produced, the streamers do not continue to grow toward the clouds; bridging the gap is the job of the step leaders as they stage their way down. The streamers wait patiently, stretching upward as the step leaders approach. Next to occur is the actual meeting of a step leader and a streamer. As discussed earlier, the streamer that the step leader reaches is not necessarily the closest streamer to the cloud. It’s very common for lightning to strike the ground even though there is a tree or a light pole or any other tall object in the vicinity. The fact that the step leader does not take the path of a straight line allows for this to occur. After the step leader and the streamer meet, the ionized air (plasma) has completed its journey to the earth, leaving a conductive path from the cloud to the earth. With this path complete, current flows between the earth and the cloud. This discharge of current is nature’s way of trying to neutralize the charge separation. The flash we see when this discharge occurs is not the strike — it is the local effects of the strike. Any time there is an electrical current, there is also heat associated with the current. Since there is an enormous amount of current in a lightning strike, there is also an enormous amount of heat. In fact, a bolt of lightning is hotter than the surface of the sun. This heat is the actual cause of the brilliant white-blue flash that we see. When a leader and a streamer meet and the current flows (the strike), the air around the strike becomes extremely hot. So hot that it actually explodes because the heat causes the air to expand so rapidly. The explosion is soon followed by what we all know as thunder. Thunder is the shockwave radiating away from the strike path. When the air heats up, it expands rapidly, creating a compression wave that propagates through the surrounding air. This compression wave manifests itself in the form of a sound wave. That does not mean that thunder is harmless. On the contrary, if you are close enough, you can feel the shockwave as it shakes the surroundings. Keep in mind that when a nuclear explosion occurs, typically the most destruction is caused by the energy of the rapidly moving shockwave. In fact, the shockwave that produces the thunder from a lightning strike can most certainly damage structures and people. This danger is more prominent when you are close to the strike, because the shockwave is stronger there and will dampen (decrease) with distance. Physics teaches us that sound travels much slower than light, so we see the flash before we hear the thunder. In air, sound travels roughly 1 mile every 4.5 seconds. Light travels at a blazing 186,000 miles (299,000 kilometers) per second. Multiple Strikes You are sitting in your car and you see a flash from a lightning strike. The first thing you notice is that there were many other branches that flashed at the same time as the main strike. Next you notice that the main strike flickers or dims a few more times. The branches that you saw were actually the step leaders that were connected to the leader that made it to its target. When the first strike occurs, current flows in an attempt to neutralize the charge separation. This requires that the current associated with the energy in the other step leaders also flows to the ground. The electrons in the other step leaders, being free to move, flow through the leader to the strike path. So when the strike occurs, the other step leaders are providing current and exhibiting the same heat flash characteristics of the actual strike path. After the original stroke occurs, it is usually followed by a series of secondary strikes. These strikes follow only the path of the main strike; the other step leaders do not participate in this discharge. In nature, what we see is often not what we get, and this is definitely the case with the secondary strikes. It is very possible that the main strike can be followed by 30 to 40 secondary strikes. Depending on the time delay between the strikes, we may see what looks like one long-duration main strike, or a main strike followed by other flashes along the path of the main strike. These conditions are easy to understand if we realize that the secondary strike can occur while the flash from the main stroke is still visible. Obviously, this would cause a viewer to think that the main-stroke flash lasted longer than it actually did. By the same token, the secondary strikes may occur after the flash from the main strike ends, making it appear that the main strike is flickering. Now you know the mechanics of a lightning strike. It’s amazing to realize that all of the activity, from the time the ionization begins to the time of the strike, occurs in a fraction of a second. High-speed cameras used to take pictures of lightning have actually caught the positive streamers on film. If you would like to observe this phenomenon in a safe environment, build a Van de Graaff generator and run it in a dark room. As you approach the generator, your fingertips will begin to glow a purplish color like that of a step leader or positive streamer. Types of Strikes and Types of Lightning Cloud to ground -Discussed previously Ground to cloud -The same as above with the exception that usually a tall, earth-bound object initiates the strike to the cloud Cloud to cloud – Also the same mechanics as discussed above except the strike travels from one cloud to another Types of Lightning Normal lightning – Discussed previously Sheet lightning – Normal lightning that is reflected in the clouds Heat lightning – Normal lightning near the horizon that is reflected by high clouds Ball lightning – A phenomenon where lightning forms a slow, moving ball that can burn objects in its path before exploding or burning out Red sprite -A red burst reported to occur above storm clouds and reaching a few miles in length (toward the stratosphere) Blue jet – A blue, cone-shaped burst that occurs above the center of a storm cloud and moves upward (toward the stratosphere) at a high rate of speed Lightning Rods Lightning rods were originally developed by Benjamin Franklin. A lightning rod is very simple — it’s a pointed metal rod attached to the roof of a building. The rod might be an inch (2 cm) in diameter. It connects to a huge piece of copper or aluminum wire that’s also an inch or so in diameter. The wire is connected to a conductive grid buried in the ground nearby. The purpose of lightning rods is often misunderstood. Many people believe that lightning rods “attract” lightning. It is better stated to say that lightning rods provide a low-resistance path to ground that can be used to conduct the enormous electrical currents when lightning strikes occur. If lightning strikes, the system attempts to carry the harmful electrical current away from the structure and safely to ground. The system has the ability to handle the enormous electrical current associated with the strike. If the strike contacts a material that is not a good conductor, the material will suffer massive heat damage. The lightning-rod system is an excellent conductor and thus allows the current to flow to ground without causing any heat damage. Lightning can “jump around” when it strikes. This “jumping” is associated with the electrical potential of the strike target with respect to the earth’s potential. The lightning can strike and then “seek” a path of least resistance by jumping around to nearby objects that provide a better path to ground. If the strike occurs near the lightning-rod system, the system will have a very low-resistance path and can then receive a “jump,” diverting the strike current to ground before it can do any more damage. As you can see, the purpose of the lightning rod is not to attract lightning — it merely provides a safe option for the lightning strike to choose. This may sound a little picky, but it’s not if you consider that the lightning rods only become relevant when a strike occurs or immediately after a strike occurs. Regardless of whether or not a lightning-rod system is present, the strike will still occur. If the structure that you are attempting to protect is out in an open, flat area, you often create a lightning protection system that uses a very tall lightning rod. This rod should be taller than the structure. If the area finds itself in a strong electric field, the tall rod can begin sending up positive streamers in an attempt to dissipate the electric field. While it is not a given that the rod will always conduct the lightning discharged in the immediate area, it does have a better possibility than the structure. Again, the goal is to provide a low-resistance path to ground in an area that has the possibility to receive a strike. This possibility arises from the strength of the electric field generated by the storm clouds. Lightning Safety On average, an estimated 330 people get struck by lightning every year in the United States, and 51 of them die as a result of the strike, according to the National Weather Service. Lightning is not something to toy with. If you are caught outside in a storm, always look for appropriate shelter. Do not take any chances — lightning can use you as a path to the earth just as easily as it can use any other object. Appropriate shelter would be a building or a car (see the “lightning myth” sidebar at the bottom of the page to find out why). If you do not have anywhere to go, then you should avoid taking shelter under trees. Trees attract lightning. Put your feet as close together as possible and crouch down with your head as low as possible without touching the ground. Never lay down on the ground. After lightning strikes the ground, there is an electric potential that radiates outward from the point of contact. If your body is in this area, current can flow through you. You never want the current to have the ability to pass through your body. This could cause cardiac arrest, not to mention other organ damage and burns. By making your body as low to the ground as possible and minimizing the amount of your body in contact with the ground, you can lower the possibility of a lightning-related injury. If a strike were to occur near you, the current would have a much more difficult time flowing through your body in this position. If you are indoors, stay off the phone. If you must call someone, use a cordless phone or cell phone. If lightning strikes the phone line, the strike will travel to every phone on the line (and potentially to you if you are holding the phone). Stay away from plumbing pipes (bath tub, shower). Lightning has the ability to strike a house or near a house and impart an electrical charge to the metal pipes used for plumbing. This threat is not as great as it used to be, because PVC (polyvinyl chloride) is often used for indoor plumbing these days. If you are not sure what your pipes are made of, wait it out.